Loading mechanics of the femur in tiger salamanders (Ambystoma tigrinum) during terrestrial locomotion.
نویسندگان
چکیده
Salamanders are often used as representatives of the basal tetrapod body plan in functional studies, but little is known about the loads experienced by their limb bones during locomotion. Although salamanders' slow walking speeds might lead to low locomotor forces and limb bone stresses similar to those of non-avian reptiles, their highly sprawled posture combined with relatively small limb bones could produce elevated limb bone stresses closer to those of avian and mammalian species. This study evaluates the loads on the femur of the tiger salamander (Ambystoma tigrinum) during terrestrial locomotion using three-dimensional measurements of the ground reaction force (GRF) and hindlimb kinematics, as well as anatomical measurements of the femur and hindlimb muscles. At peak stress (29.8 ± 2.0% stance), the net GRF magnitude averaged 0.42 body weights and was directed nearly vertically for the middle 20-40% of the contact interval, essentially perpendicular to the femur. Although torsional shear stresses were significant (4.1 ± 0.3 MPa), bending stresses experienced by the femur were low compared with other vertebrate lineages (tensile: 14.9 ± 0.8 MPa; compressive: -18.9 ± 1.0 MPa), and mechanical property tests indicated yield strengths that were fairly standard for tetrapods (157.1 ± 3.7 MPa). Femoral bending safety factors (10.5) were considerably higher than values typical for birds and mammals, and closer to the elevated values calculated for reptilian species. These results suggest that high limb bone safety factors may have an ancient evolutionary history, though the underlying cause of high safety factors (e.g. low limb bone loads, high bone strength or a combination of the two) may vary among lineages.
منابع مشابه
Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.
The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) ti...
متن کاملComparative limb bone loading in the humerus and femur of the tiger salamander: testing the 'mixed-chain' hypothesis for skeletal safety factors.
Locomotion imposes some of the highest loads upon the skeleton, and diverse bone designs have evolved to withstand these demands. Excessive loads can fatally injure organisms; however, bones have a margin of extra protection, called a 'safety factor' (SF), to accommodate loads that are higher than normal. The extent to which SFs might vary amongst an animal's limb bones is unclear. If the limbs...
متن کاملBolker et al . : p . 1 of 31 Disease as a selective force precluding widespread cannibalism : A case study of an iridovirus of tiger salamanders , Ambystoma tigrinum
Question: Do realistic models predict that infectious disease will select for altered life histories? Specifically, under what conditions can trophic disease transmission influence life history evolution in tiger salamanders by selecting against cannibalistic morphs? Data: previous information from laboratory and field studies on Ambystoma tigrinum nebulosum populations from the Kaibab Plateau ...
متن کاملA Model Host-pathogen System for Studying Infectious Disease Dynamics in Amphibians: Tiger Salamanders (ambystoma Tigrinum) and Ambystoma Tigrinum Virus
Pathogens are among the suspected causes of declining amphibian populations, but studying infectious diseases in small, threatened populations is ethically and experimentally questionable. Progress on understanding amphibian diseases requires model host-pathogen systems with populations large enough for robust experimental designs that do not threaten the amphibian host with extinction. We repo...
متن کاملTwisting and bending: the functional role of salamander lateral hypaxial musculature during locomotion.
The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion du...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 15 شماره
صفحات -
تاریخ انتشار 2011